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Abstract—Event cameras are biologically-inspired vision sen-
sors that capture pixel-level illumination changes instead of
the intensity image at a fixed frame rate. They offer many
advantages over the standard cameras, such as high dynamic
range, high temporal resolution (low latency), no motion blur,
etc. Therefore, developing state estimation algorithms based
on event cameras offers exciting opportunities for autonomous
systems and robots. In this paper, we propose monocular
visual-inertial odometry for event cameras based on event-
corner feature detection and matching with well-designed
feature management. More specifically, two different kinds
of event representations based on time surface are designed
to realize event-corner feature tracking (for front-end incre-
mental estimation) and matching (for loop closure detection).
Furthermore, the proposed event representations are used to
set mask for detecting the event-corner feature based on the
raw event-stream, which ensures the uniformly distributed and
spatial consistency characteristic of the event-corner feature.
Finally, a tightly coupled, graph-based optimization framework
is designed to obtain high-accurate state estimation through
fusing pre-integrated IMU measurements and event-corner
observations. We validate quantitatively the performance of
our system on different resolution event cameras: DAVIS240C
(240*180, public dataset, achieve state-of-the-art), DAVIS346
(346*240, real-test), DVXplorer (640*480 real-test). Further-
more, we demonstrate qualitatively the accuracy, robustness,
loop closure, and re-localization performance of our framework
on different large-scale datasets, and an autonomous quadro-
tor flight using our Event Visual-inertial Odometry (EVIO)
framework. Videos of all the evaluations are presented on the
project website.

I. INTRODUCTION
State estimation is the most fundamental topic in the

field of robotics, such as Simultaneous Localization and
Mapping (SLAM) / Visual Odometry (VO), navigation, path
planning, drone control, autonomous driving, etc. Recently,
the approaches that assist the visual sensor (camera) with
inertial sensor (inertial measurement unit, IMU), also known
as Visual Inertial Odometry (VIO), have gained significant
research interest and progress [1] [2]. However, due to the
inherent limitations of the standard cameras, such as motion
blur and low dynamic range, the VIO systems based on
standard cameras might easily fail during the high-speed
motions or in the high-dynamic-range (HDR) scenarios.

Event cameras, also called Dynamic Vision Sensors
(DVS), offer a huge potential to overcome the aforemen-
tioned issues due to their extremely high temporal resolution
and HDR property [3]. Event cameras constitute a new
paradigm shift that operates asynchronously, transmitting
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only the information conveyed by brightness changes in
individual pixel. Event cameras have many advantages over
the standard cameras: (i) Extremely high temporal resolution
and negligible latency on the order of a few milliseconds;
(ii) HDR (140 dB for the event cameras, while 60 dB for
standard cameras). (iii) Since all pixels only capture the
brightness change asynchronously and independently, event
cameras do not suffer from motion blur [3], and also remove
the inherent redundancy of standard image. These properties
allow the event cameras to confer robustness to vision-based
localization in challenging scenarios. However, adopting the
event camera into the SLAM/VO is a very challenging task,
this is caused by the fact that the event streams are composed
of asynchronous events which are fundamentally different
from the synchronous intensity images. Thus, the traditional
computer vision algorithms cannot be directly applied. Some
works have addressed this challenge by reconstructing the
intensity frame from the event data [4] [5], aggregating a
group of events within a short period of time into event frame
[6] [7] [8], or combining event cameras with additional
sensors (e.g. depth sensors [9], standard cameras [10]).
However, those would introduce bottlenecks and lose the
natural advantages of the event camera.

In this paper, different from existing methods that re-
construct or aggregate intensity-image from the event data,
we directly use the asynchronous raw events for feature
detection (named as event-corner feature). To this end, we
propose two kinds of event representations based on the time
surface (TS) for assisting uniformly distributed feature detec-
tion, front-end feature tracking, and loop closure matching.
We investigate the proposed event-corner feature tracker
and matcher into monocular event visual-inertial odometry
(EVIO) based on sliding windows graph-based optimization
to estimate arbitrary 6 DoF (degree-of-freedom) motion. Our
contributions are summarized as follows:

1) Instead of extracting the features on the intensity-
image generated from events, we propose a steady and
uniformly distributed event-corner feature detector that
directly works on the raw events.

2) We design two different event representations, the TS
with the polarity and the normalized TS without polar-
ity, to perform robust feature tracking and loop closure
matching using the previously detected event-corner
features.

3) The event-corner features tracker and matcher are inte-
grated into a keyframe-based visual-inertial system that
tightly fuses the event-corner features with IMU data to
update the state. Furthermore, our EVIO framework can
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bootstrap from unknown initial states, and also ensure
global consistency thanks to the loop closure.

4) We evaluate the proposed method on different reso-
lution event cameras: DAVIS240c (240*180, publicly
available dataset, achieve state-of-the-art), DAVIS346
(346*240, real-test), DVXplorer (640*480, real-test),
and DVXplorer-Mini (640*480, quadrotor flighting). It
is our knowledge that this is the first EVIO framework
can realize real-time performance in high resolution
event cameras with the loop closure to reduce the drift.

The remainder of the paper is organized as follows: Sec-
tion II introduces the related works in event-based SLAM,
VO, and VIO. Section III introduces the principle of our
methods. Section IV and V present the experiments and
results. Finally, conclusion is given in Section VI.

II. RELATED WORKS

A. Event-based SLAM/VO

Event-based ego-motion estimation and perception have
gained increasing interest for the task of SLAM/VO in
challenging scenarios where the performance of traditional
cameras is compromised such as in HDR scenarios or
aggressive motions. Weikersdorfer et al. [11] proposed the
first event-based 2D SLAM system, which tracks a ground
robot pose while reconstructing the 2D ceiling map with
an upward-looking event camera. Ref. [10] claimed that
they developed the first event-based VO to track the 6-DoF
motion. However, this method is not purely event-based,
since the features are first detected in the grayscale frames,
and then tracked asynchronously using event stream. The
first purely event-based 6-DoF VO was presented in [4],
which performed real-time event-based SLAM through three
decoupled probabilistic filters that jointly estimate the 6-DoF
camera pose, 3D map of the scene, and image intensity.
However, it is computationally expensive and requires GPU
to achieve real-time performance. EVO [8] proposed to
solve the SLAM problem without recovering image intensity,
thus reducing computational complexity, and it can run
in real-time on a standard CPU. It performs a geometric
approach which combines a tracking approach based on
image-to-model alignment and semi-dense 3D reconstruction
algorithm [12] in parallel. However, the algorithm is needed
to run in the scene that is planar to the sensor, up to several
seconds, for bootstrapping the system. ESVO [13] is the
first stereo event-based VO method, which follows a parallel
tracking-and-mapping scheme to estimate the ego-motion
and the semi-dense 3D map of the scene. However, it barely
operates real-time in DAVIS346 (346*240) and is limited
by rigorous and unreliable initialization. Furthermore, the
ESVO needs to perform re-initialization in the case of too
few events boosting. Ref. [14] proposed stereo VO for
event cameras based on features. The pose estimation is
done by re-projection error minimization, while the features
are stereo and temporally matched through the consecutive
left and right event TS. It solves the problems of ESVO

mentioned above. However, it still cannot operate in real-
time for high-resolution event cameras (640*480).

B. Event-based Visual-Inertial Odometry (EVIO)

Most of the event cameras, e.g. DAVIS or DVXplorer,
have the IMU readily integrated. The first EVIO method
is proposed in Ref. [15] which fuses a purely event-based
tracking algorithm with IMU through Extended Kalman Fil-
ter. A similar method was proposed in Ref. [6], which gen-
erated motion-compensated edge images aggregated within
in temporal neighborhood events. The features are detected
through fast corner detector [16] and tracked through pyra-
midal Lucas Kanade (LK) in the motion-compensated event
image, and then combined with IMU measurement using
graph-based optimization. The authors also extended this
method to leverage the complementary advantages of both
standard and event cameras in Ultimate-SLAM [7] to fuse
events image frame, standard frames, and IMU. Both Ref.
[6] and Ref. [7] aggregate the event data into an image frame
and then adapt the conventional corner detection algorithms,
such as FAST corners [16] or Shi-Tomasi [17] score for
the feature detection. Ref. [18] proposed to fuse events
and IMU measurement into a continuous-time framework.
However, their approach cannot achieve real-time because
of the expensive optimization required to update the spline
parameters upon receiving every event [6]. IDOL [19] in-
vestigates line-feature into VIO framework through directly
using asynchronous raw events without using any frame-like
accumulation. However, it also doesn’t have real-time capa-
bilities even in low-resolution event cameras (240*180). All
of these EVIO works are only evaluated on low-resolution
DAVIS240C (240*180). Besides, these works lack the loop
closure function, which might cause a large amount of drift
for long-term motions.

III. METHODOLOGY

Fig. 1 gives an overview of our EVIO modules involved
and their interactions. Our EVIO framework is composed
of two sections: (i) The front-end takes the raw event
stream as input and extracts the event-corner features directly
using the raw events based on the Surface of Active Events
(SAE) [20]. It establishes feature tracking and recovers the
inverse depth of each tracked event-corner for generating
3D event-corner features as landmarks. Furthermore, more
event-corner features are extracted and passed to the back-
end for loop detection. Two kinds of event representations:
the TS with polarity and normalized TS without polarity
are designed for assisting uniformly distributed event-corner
feature detection, feature tracking, and descriptor generation.
(ii) The back-end tightly fuses the event-corner landmarks
and the IMU measurements to estimate the 6 DoF state of
the system while the loop closure is used to eliminate the
accumulated drifts.

A. Proposed Two Types of Event Representations

An event is triggered only when the intensity of an
individual pixel varies exceeds a specific threshold Tthreshold ,
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Fig. 1: Overview our proposed EVIO pipeline

which can be represented as the spatio-temporal coordinates
of the intensity change and its sign:

e = {t,x,y, p}⇔ I(x,y, t +�t)− I(x,y, t) = p ·Tthreshold (1)

where t is the timestamp that the intensity of a pixel I (x,y)
changes, and p is the polarity which indicates the direction
of the intensity change. Our method operates on individual
raw events and is aided through two event representations,
called TS with polarity and normalized TS without polarity,
which are generated from SAE. The SAE S is defined as
S = tlast(x,y), which is a simple 2D map containing the
timestamp tlast(x,y) of the last event that occurred at each
pixel, for positive and negative polarity, respectively. These
two SAE record the triggered events in the stream, which
are used for event-corner detection (discussed in subsection
III.B). To construct the event-corner feature tracker and de-
scriptor, we use the timestamp value from SAE S to construct
two alternative event maps at time t, where t ≥ tlast(x,y),
named as TS with polarity Tp(x,y, t) and normalized TS
without polarity Tnp(x,y, t), which are designed as:

Tp(x,y, t) = p · exp(− t −S
τ

) (2)

Tnp(x,y, t) = (
255.0

max(T ′
)−min(T ′

)
) · (T ′ −min(T

′
)) (3)

where, T
′
= exp(− t−S

τ ), and τ presents a constant decay rate
(20-30 ms in our experiments). The polarity p is the sign of
the brightness change.

The TS with polarity Tp(x,y, t) (shown in Fig.2(b) and the
middle of Fig.3(a)) represents the recent history of moving
edges with direction. The polarity p is useful for feature
tracking, since it records the direction of the event change,
which would easily respond to edges in the scene in presence
of different relative motions (optical flow). As shown in the
middle of Fig. 3(a), the value of Tp(x,y, t) changes from
“white to black” and “black to white” caused by opposite
relative motions. However, the polarity might cause ambi-
guity when the sensor moves in different directions of the

same scene, the pixel values of the same edges might change
differently according to the polarity. This will influence
image matching seriously. Therefore, for the loop detection,
we used the second event representation, the TS without
polarity, and further refined it to normalized TS without
polarity Tnp(x,y, t) (as shown in the right of Fig. 3(a)),
which records the normalized temporal-spatial constraints
as scene outline and ensures the spatial consistency. This
kind of event representation is representative of the scene
structure as it emphasizes the edges, thus containing relevant
information for discriminative event-corner descriptors.

B. Event-corner Feature Detection and Tracking based on
the Time Surface with Polarity

For new event-stream coming, firstly ,the existing event-
corner features are tracked by the LK optical flow [21]
on the TS with polarity Tp(x,y, t). The features that are
not successfully tracked in the current timestamp would be
discarded. After that, new event-corner would be detected
from the latest raw event stream, whenever the number of
the tracked features falls below a certain threshold (150-
200 in our experiment). Modified from the publicly available
implementation of the Arc* algorithm [22] for event-based
corner detection, we extract the event-corners on the raw
individual event by leveraging the SAE rather than adopting
the conventional corner detection algorithms.

To classify a new event as an event-corner, we need to
inspect previously triggered events in the stream, especially,
the events in the adjacent pixels. Since exploring all the
previous events would be impractical, the SAE is used
to summarize and update the event stream at any given
instant. The Arc* algorithm maintains two circular sets of
events around the new arrival event and detects as corners
whenever the continuous arc or its complementary arc in
these two circulars of SAE is within a certain range. The
detected event-corner would be further selected by setting
the TS with polarity Tp(x,y, t) as the mask. To enforce
the uniform distribution, a minimum distance (10-20 pixels
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(a)

(b)

Fig. 2: (a) Detect event-corner from the raw event; (b) Select the features using the Time Surface with polarity as mask

(a)

(b)

(c)

Fig. 3: (a) The raw event stream (left), the Time Surface with polarity (middle), and the normalized Time Surface
without polarity (right); (b) Event-corner tracking on Time Surface with polarity; (c) Loop detection using the

event-corner features and the normalized Time Surface without polarity

for different resolution event camera) is set between two
neighboring event-corner features. Meanwhile, we maintain
the event-corners, where the pixel value of the TS with
polarity Tp(x,y, t) is not equal to 128.0, to emphasize the
detected event-corner features located in the strong edges
rather than the too many noisy features in low texture areas.
This process is visualized in Fig. 2.

Furthermore, all the event-corner features are first undis-
torted based on the camera distortion model, and then
projected to a normalized camera coordinate system. To
remove outliers, we also use the Random Sample Consensus
(RANSAC) to further filter the outliers. After that, we
recover the inverse depth of the features that are success-
fully tracked between two consecutive timestamps through
triangulation. The landmark whose 3D position has been
successfully calculated would be fed to the sliding window
for the pose graph optimization. It is worth mentioning that,
although we try to maintain the number of event-corners
within a certain threshold, the number of event-corners used
for pose graph optimization still depends on the relative
motion and texture of the scene.

C. Pose Graph Optimization

The full state vector in the sliding window is defined as:

χ = [χb,T b
c ,λc] (4)

where T b
c = [Rb

c , t
b
c ] is the extrinsic transformation from the

camera frame c to the body (IMU) frame b; λc = [λ0, ...,λm]
is the inverse depth of the mth event-corner features in
the sliding windows; χb = [X1, ...,XK ] is the optimization
variables in the sliding windows, which comprises the state
of the IMU, with K (K = 10 in our experiments), the
total number of keyframes in the sliding windows. The
system state Xk at kth keyframe is given by the position
pw

bk
, orientation quaternion qw

bk
, and the velocity vw

bk
of the

IMU in the world frame, and the accelerometer bias bak and
gyroscope bias bgk as follows:

Xk = [pw
bk
,qw

bk
,vw

bk
,bak ,bgk ] (5)

Joint nonlinear optimization which is solved for the maxi-
mum a posteriori estimation of χ , the cost function can be
written as:

J(χ) = ||ep||2Wp +
K−1

∑
k=0

||ek
i ||2W k

i
+

K−1

∑
k=0

∑
l∈ζ

||ek,l
c ||2W k

c
(6)

The Ceres solver is used for solving Eq.(6), which contains
the marginalization residuals ep with weight Wp, the IMU
pre-integration residuals ek

i with weight W k
i , and the ek,l

c
is the event measurement residual from the re-projection
function Eq.(7), with weight W k

c . While ζ is the set of event-
corner features that have been observed/tracked at least twice
in the current sliding window. Considering the lth feature
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that is first observed in the ith keyframe, the residual for its
observation in the kth keyframe is defined as:

ek,l
c =

[
uk

l
vk

l

]
−πc · (T b

c )
−1 ·T bk

w ·T w
bi
·T b

c ·π−1
c (

1
λl
,

[
ui

l
vi

l

]
)

(7)

where,
[

ui
l

vi
l

]
is the first observation of the lth feature

in the ith keyframe.
[

uk
l

vk
l

]
is the observation of the same

feature in the kth keyframe, πc and π−1
c are the projection and

back-projection function of the event camera, respectively,
which includes the intrinsic parameters for the transform
between the 2D pixel coordinates and normalized camera
coordinate. T w

bi
indicates the movement of the body frame

related to the world frame in timestamp i, T bk
w is the

transpose of the pose of the body in the world frame in
the kth keyframe.

D. Loop Detection based on the Normalized Time Surface
without Polarity

To eliminate the accumulated drifts and ensure global
consistency for long-term motion, in addition to the event-
corner features that are used for EVIO front-end, extra
event-corners are detected, and then described by the BRIEF
descriptor [23], and further feed to the back-end (as depicted
in Fig.1). These additional event-corner features are used to
achieve a better recall rate on loop detection. Thanks to our
designed normalized TS without polarity, Tnp(x,y, t), which
would be triggered in the scene that has strong edges, it can
help for the place recognition and ensure global consistency.
The correspondences are found by the BRIEF descriptor
matching through identifying by Hamming distance. When
the number of the correspondences of the event-descriptors is
greater than a certain threshold (16-25 in our experiments),
the loop closure is detected (as shown in Fig. 3(c)). We
adopt the two-step geometric outlier rejection for wrong
BRIEF descriptor matching, DBoW2 for loop recognition,
and re-localization scheme from VINS-Mono [2] in our
implementation. After detecting the loop, the connection
residual of the previous keyframe and the current keyframe
are integrated into the pose graph optimization.

E. Additional Implementation Details

Initialization: Adopted from [2] and [24], the initialization
procedure of our EVIO starts with a vision-only structure
from motion (SfM) to build the up-to-scale structure of
camera pose and event-corner feature positions. Through
loosely aligning the SfM with the pre-integrated IMU Mea-
surements, it can bootstrap the system from unknown initial
states, instead of assuming the sensor remains static during
the initialization phase [7] [6] or assuming the local scene
is planar to the sensor [8].

Keyframe Selection: A new keyframe is selected by
two criteria: (i) When the average parallax of the tracked
features, between two consecutive timestamps, is beyond a

threshold (10 is set in our experiment). (ii) When the number
of successfully tracked features from the last timestamp falls
below a certain threshold (30 is set in our experiment).

Still State: Since the event cameras output very little
events (only noise) when the sensor is still. We would restart
the EVIO estimator whenever the number of event falls
below a threshold (1000 is set in our experiment) to avoid
divergence.

Low Latency: To achieve low latency, we directly forward
propagate (loosely-coupled) the latest EVIO estimation with
the IMU measurements to achieve IMU-rate EVIO outputs
which can be up to 1000 Hz.

IV. EVALUATION

In this section, we assess the accuracy of our EVIO
framework both quantitatively and qualitatively on different
challenging sequences with different resolution event cam-
eras (Table I). We implemented our EVIO method with C++
in Ubuntu 20.04 and ROS Noetic. All the sequences are
evaluated in real-time using a laptop with Intel Core i7-
11800H and are recorded in videos (shown on our project
website).

In subsection IV.A, we compare the accuracy of our EVIO
framework with other current EVIO works in a publicly
available Event Camera Dataset [25] which is acquired by
the DAVIS240C (240*180, event-sensor, image-sensor, IMU
sensor), it contains extremely fast 6-Dof motion and scenes
with HDR.

TABLE I: Summary of the data sequences in Section IV

rosbag Section IV.A
Public Dataset [25]

Section IV.B
Real-test

Section IV.C
Real-test

Sensor Davis240C DAVIS346
DVXplorer DVXplorer

Topic

/optitrack/davis /dvs vicon/gt pose No Ground Truth

/dvs/events /davis346/events
/dvxplorer/events /dvs/events

/dvs/imu /davis346/imu
/dvxplorer/imu /dvs/imu

/dvs/image raw /davis346/image raw No Image

Event Stream Rate 30HZ DAVIS346: 60 HZ
DVXplorer: 50 HZ 50HZ

Average Duration 59.8s 156.3 s 171.6s

Data size 7×105 DAVIS346: 6×105

*DVXplorer: 2×106 2×106

Resolution 240*180 DAVIS346:346*240
DVXplorer:640*480 640*480

Description
indoor aggressive
HDR scenarios
under optitrack

indoor aggressive
HDR scenarios

under vicon

indoor&outdoor
HDR scenarios

long-term

* Datasize : The number of events per stream, e.g. 2×106 indicates the average number
of events for the sequences is 2×106 ×50HZ ×156.3s = 1.6×1010.

To further explore the performance of our EVIO frame-
work in high-resolution event cameras, in subsection IV.B
and IV.C, we use the DAVIS346 (346*240, event-sensor,
image-sensor, IMU sensor) and DVXplorer (640*480, event-
sensor, IMU sensor) for data collection. It is worth mention-
ing that, our EVIO only uses the event stream. The image-
frame output of the DAVIS is only used for illustration
purposes or image-based VIO/VO comparison. The event
camera and IMU calibration (including the intrinsic and
extrinsic parameters, and the time offset of the camera-imu)
are estimated using Kalibr [26] as well as the DV module 1.

1https://gitlab.com/inivation/dv/dv-imu-cam-calibration
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A motion capture system (VICON) is used to obtain the pose
ground truth. Since the active infra-red (IR) emitters on the
VICON cameras would influence the event camera greatly,
we adopt the IR filter lens to remove the IR influence. For
the convenience of the research community, we also release
these data sequences with rosbag on our project website.

A. Comparison with Other EVIO Works in Aggressive Mo-
tions

The estimated and ground-truth trajectories were aligned
with a 6-DOF transformation (in SE3), using 5 seconds
[0-5s] of the resulting trajectory. We computed the mean
position error (Euclidean distance in meter) as percentages
of the total traveled distance of the ground truth, which
are calculated by the publicly available RPG Trajectory
Evaluation tool [27]. Due to the lack of publicly available
EVIO open source code, we directly refer to the raw result
from [15] [6] [7], which is also aligned with SE3 using
5 seconds. Table II shows the remarkable accuracy of our
method compared to the state-of-the-art EVIO works. It’s
worth mentioning that, although IDOL [19] also provides
their results in this Event Camera Dataset [25], they just run
0-40 s of the dataset to avoid the aggressive motion. Fig.4
presents the estimated trajectories against the ground truth
for the sequence dynamic translation and dynamic 6dof,
which are generated by the publicly available tool EVO [28],
and also visualizes the relative translation and yaw error by
averaging the drift over different segments of the trajectory.
We find that our EVIO achieves fairly good results.

TABLE II: Accuracy of our method compared with the
State-of-the-art EVIO Methods

Sequence Ours Ref. [15] Ref. [6] Ref. [7] (E+I)
boxes translation 0.34 2.69 0.57 0.76

hdr boxes 0.40 1.23 0.92 0.67
boxes 6dof 0.61 3.61 0.69 0.44

dynamic translation 0.26 1.90 0.47 0.59
dynamic 6dof 0.43 4.07 0.54 0.38

poster translation 0.40 0.94 0.89 0.15
hdr poster 0.40 2.63 0.59 0.49

poster 6dof 0.26 3.56 0.82 0.30
Average 0.39 2.58 0.69 0.47

Unit:%/m, 0.39 means the average error would be 0.39m for 100m
motion.

B. Evaluation with High-resolution Event Cameras in High-
Dynamic-Range Scenarios

For further demonstrating the robustness, accuracy, and
real-time capability, we also evaluate our EVIO using high-
resolution event cameras (DAVIS346 (346*240) and DVX-
plorer (640*480)) with the ground truth from VICON. The
DAVIS346 and DVXplorer are attached together (shown
in Fig.5(a)) for facilitating comparison. All the sequences
are recorded in HDR scenarios with very low illumi-
nation or strong illumination changes through switching
the strobe flash on and off, while the 11st sequence (vi-
con aggressive hdr) is characterized by aggressive motion.
Without loss of generality, we also used the raw image from
DAVIS346 to run the VINS-MONO [2] and the VO version
of ORB-SLAM3 [1] (the VIO version failed or cannot

initialize in all the sequences), as image-based VIO/VO for
comparison. The results are shown in Table III. It is worth

TABLE III: Accuracy of our EVIO compared with
VINS-MONO and ORB-SLAM3

Sequence VINS-MONO [2]
DAVIS346

ORB-SLAM3 [1]
DAVIS346

Our EVIO
DAVIS346

Our EVIO
DVXplorer

vicon hdr1 0.96 0.32 0.59 0.30
vicon hdr2 1.60 0.75 0.74 0.37
vicon hdr3 2.28 0.60 0.72 0.69
vicon hdr4 1.40 0.70 0.37 0.26

vicon darktolight1 0.51 0.75 0.81 0.80
vicon darktolight2 0.98 0.76 0.42 0.57
vicon lighttodark1 0.55 0.41 0.29 0.81
vicon lighttodark2 0.55 0.58 0.79 0.75

vicon dark1 0.88 failed 1.02 0.35
vicon dark2 0.52 0.60 0.49 0.41

vicon aggressive hdr failed failed 0.66 0.65
Average 1.02 0.61 0.63 0.54

Unit:%/m, 0.54 means the average error would be 0.54m for 100m motion.

mentioning that, for the results of vicon aggressive hdr, our
EVIO produces reliable and accurate pose tracking even
when the image-based VIO and VO fails. Although the
VO version of ORB-SLAM3 performs comparably to our
EVIO in DAVIS346, it would track failures and lose tracking
frames during the aggressive motion or too dark scenarios
which would affect the generation of the descriptor seriously.
Thanks to the re-localization scheme, the ORB-SLAM3-
VO can handle the tracking failed issue after re-detecting
the ORB descriptor in good illumination condition, but this
would cause interruption during the estimation. While our
EVIO can provide continuous and smooth state estimation.
In addition, one of the main challenging aspects of this
dataset is that most of the scenarios are dark (please see
the supplemental video), this would introduce many noise
events. However, our EVIO still can obtain satisfactory
results.

Another challenging aspect is the heavy event load of
this dataset compared with the ones in subsection IV.A.
We found that the amount of event data from the high-
resolution event camera (such as DVXplorer) is as large as
the order of 106 (for each event stream, shown in Table I).
The public event camera dataset [25], which only works on
30 HZ event stream inputs. However, to further evaluate the
performance of our EVIO in the large throughput event load,
we modified the driver code for DAVIS346 and DVXplorer
with a higher stream rate and not limited maximum events
for each stream, which can also ensure a steady frequency of
the event stream. The large throughput of our well-designed
feature management ensures our system can handle 60 HZ
data input from DAVIS346 with 30HZ front-end output,
and 50 HZ data input from DVXplorer with 25HZ front-
end output. It can ensure the real-time ability for heavy
event load in the high-resolution event camera rather than
slowing down the rosbag reproduction just like [13] [14].
The running time of each module in our EVIO can be seen
in Table IV

C. Real-test for Outdoor Scenarios

The workspace of the sequences in subsection IV.A and
IV.B is relatively small, it is difficult to distinguish between
drift and failure from error value alone. Therefore, in this
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(a) dynamic translation(a) dynamic

(b) dynamic 6dof
Fig. 4: Comparison of translation and rotation estimates of our proposed EVIO against ground truth; The relative errors

of the translation and yaw angle
TABLE IV: Running Time of our EVIO in different

resolution event cameras (ms)

Modules DAVIS240c DAVIS346 DVXplorer
Creation of Event Representations 0.37 0.98 3.65

Event-corner Feature Detection 0.49 0.40 1.60
Event-corner Feature Tracking 0.86 0.71 1.16
The Whole Front-end Process 3.98 3.81 12.38
Event-corner Loop Matching 27.73 19.56 67.95

section, several sequences were further recorded outdoors,
in HKU campus, features aggressive motion, long-term
movement, strong sunlight, or indoor-outdoor conversion.
Additionally, there are several pedestrians in the scene
generating outlier events. Since the motion capture system
is not available outdoors, we just evaluate the qualitative
performance, and we also returned to the same location after
a large loop to evaluate the loop closure. As can be seen
from Fig. 5(b), the estimated trajectory is aligned and almost
coincide with the Google map. It is worth mentioning that
our EVIO can effectively detect feature points at a distance
of up to 20 meters (shown in Fig.3(b)). More evaluations
for the outdoor environment, robust feature tracking, and
the loop closure can be seen in our demonstrations2.

V. QUADROTOR EXPERIMENT USING DVXPLORER-MINI

In this section, we demonstrate the quadrotor flight-
ing based on our proposed EVIO using DVXplorer-Mini
(640*480). We build our quadrotor (Fig. 6(a)) from selected
off-the-shelf components and custom 3D printed items. Our
quadrotor relies on a QAV380 frame with T-MOTOR F60
KV2550. The electronic parts of our quadrotor comprise
a Pixracer (FMUv4) autopilot with Up Xtreme i7 8665ue

2https://b23.tv/0oxnv9U

(a) (b)

Fig. 5: (a)The setup for section IV.B; (b) Estimated
trajectory in outdoor environment aligned with Google map

computer, which runs Ubuntu 20.04 and ROS Noetic. The
DVXplorer-Mini is mounted on the front of the quadrotor,
looking forwards, which is connected to the Up Xtreme via
USB 3.1 A to C cable and transmits events and inertial
measurements for our EVIO state estimation. The quadrotor
is commanded to hover with slight jitter, our EVIO estimated
result against with the VICON ground truth can be seen in
Fig. 6(b).

(a) (b)

Fig. 6: (a) Our quadrotor platform and VICON room; (b)
The estimated trajectory and its comparison against VICON
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VI. CONCLUSIONS

In this paper, we have developed a low-latency, real-time,
monocular event-based visual-inertial odometry framework
to provide accurate metric tracking of the 6 DoF pose.
The method is based on our designed steady and uniformly
distributed event-corner feature detector, which is done with
raw individual events but consecutively tracked in TS with
polarity, and spatially matched in normalized TS without
polarity. Our EVIO can estimate up to 1000 HZ poses
while recovering a sparse 3D map of the environment.
The performance of the proposed is quantitatively and
qualitatively evaluated in different resolution event cam-
eras: DAVIS240C (240*180, publicly dataset), DAVIS346
(346*240, real-test), DVXplorer (640*480, real-test), and
DVXplorer-Mini (640*480, quadrotor flighting). Our method
achieve fairly good performance compared with state-of-the-
art EVIO works, VINS-MONO, and ORB-SLAM3. How-
ever, the limitations of our work might be that the event
cameras tend to only trigger events over edge-like features,
low texture areas generate very few events. Therefore, our
EVIO might suffer some problems in less low texture
scenarios. In our future work, we might explore the line-
based features for EVIO. Besides, multi-sensors, including
LiDAR, visible light positioning [29], or GPS, might be
fused together to achieve more robust state estimation and
exploit the complementary advantage of different sensors
with event cameras.
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